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Abstract

In this paper, we explore the compression of deep neu-
ral networks by quantizing the weights and activations into
multi-bit binary networks (MBNs). A distribution-aware
multi-bit quantization (DMBQ) method that incorporates
the distribution prior into the optimization of quantization
is proposed. Instead of solving the optimization in each
iteration, DMBQ search the optimal quantization scheme
over the distribution space beforehand, and select the quan-
tization scheme during training using a fast lookup table
based strategy. Based upon DMBQ, we further propose
loss-guided bit-width allocation (LBA) to adaptively quan-
tize and even prune the neural network. The first-order Tay-
lor expansion is applied to build a metric for evaluating the
loss sensitivity of the quantization of each channel, and au-
tomatically adjust the bit-width of weights and activations
channel-wisely. We extend our method to image classifica-
tion tasks and experimental results show that our method
not only outperforms state-of-the-art quantized networks in
terms of accuracy but also is more efficient in terms of train-
ing time compared with state-of-the-art MBNs, even for the
extremely low bit width (below 1-bit) quantization cases.

1. Introduction

In the past decades, deep neural networks have achieved
great successes in many fields [15, 21, 37, 7]. However,
the requirements of huge memory footprint and computa-
tional resources impede the practical deployment of net-
work based algorithms on resource-constraint devices, e.g.,
mobile phones, smart dresses and autopilot vehicles.

To facilitate deployability, network quantization meth-
ods quantize the weights and activations into low precision,
greatly compressing the model size and reducing the re-
quired computational resources in inference [19, 39, 13, 5,
3]. These network quantization methods need to solve two
main problems: (1) How to quantize the weights and activa-
tions with lower precision and higher accuracy? (2) How to
allocate the bit-width to quantize different parts of weights
and activations for optimal performance?

As for the former problem, three main types of quantiza-
tion schemes are proposed, including fixed-point [19, 13],
power of two [24, 38, 18] and binary/ternary [6, 16, 40, 28,
20, 26] quantization. Recently, the multi-bit quantization
(MBQ) [20] that quantize weights and activations into the
combination of multiple binary bases is proposed, which
could achieve better performance and require less computa-
tional resources. Based upon MBQ strategy, various meth-
ods [20, 36, 32, 27] have been proposed to optimize the
quantization problem in the training process to improve the
accuracy of MBQ and have made significant improvements.
However, how to derive the optimal quantization schemes,
i.e., the multi-bit binary filters and the corresponding co-
ordinates, efficiently during the iterations of training-aware
quantization remains a knotty problem [27], suffering from
the difficulty of the integer optimization (theoretically NP-
hard). In this paper, inspired by Banner ef al. [1] that the
distribution can be utilized in the quantization, we explore
the distribution of weights and dedicate to find the opti-
mal quantization scheme of MBQ under the distribution as-
sumption. By minimizing the expected mean square error
, a lookup table based strategy is proposed to optimize the
quantization schemes with very few computational cost dur-
ing the iterations.

As for the latter one, except the globally unified bit-
width allocation, mixed precision quantization which allo-
cates different bit-width to different parts of the network,
either layer-wise [9, 8, 10, 31] or channel-wise [22, 17, 5],
is proposed to reduce the degradation of quantization, es-
pecially for low-bit cases. However, the bit-width alloca-
tion is quite challenging. Existing methods, e.g., deep rein-
forcement learning [22, 10, 31], Hessian information [9, 8],
and pruning-based optimization [27], require considerable
computation cost, hindering their application in practice. In
this paper, through modeling the quantization effect upon
the loss of network with Taylor expansion, we formulate a
metric to evaluate the quantization sensitivity of weights,
i.e., the loss variation of the network with the quantization
of weights. Since only gradients of quantized weights are
required, which could be directly obtained from the back-



ward propagation, the metric can be easily computed, and
thus we can adaptively adjust the quantization bit-width of
weights and activations in the training process without too
much computational load.

In all, we make the following contributions:
e We introduce a distribution-aware multi-bit quantiza-

tion (DMBQ) method for efficient and optimal MBQ
quantization.

e We propose a first-order Taylor expansion based met-
ric for evaluating the loss-sensitivity of the quantized
weights and activations and introduce a loss-guided
bit-width allocation (LBA) method.

* We demonstrate the effectiveness and efficiency of the

proposed method through extensive comparisons with
the state of the art methods.

2. Related Work

Multi-bit Quantization MBQ attracts much attentions
for its powerful representation capability and high effi-
ciency for inference. But due to a NP-hard integer opti-
mization problem is involved, most MBQ suffering from the
optimization difficulty in practice. Lin et al. [20] propose
ABC-Net which obtain quantization scheme for weights by
applying the least square optimization during each itera-
tion. Xu et al. [32] propose a multi-bit alternating quan-
tization scheme for LSTM and GRU networks, and bi-
nary search tree are employed to optimize binary bases ef-
ficiently. Zhang et al. [36] and Qu et al. [27] propose
to optimize the binary bases and coordinates alternatively
by minimizing construction error and quantization-induced
loss respectively. All these methods suffer from the prob-
lem that there is no guarantee to find the optimal quantiza-
tion scheme and heavy computational load is involved. In
this paper, we propose a distribution-aware MBQ method
that take the distribution prior of weights into the optimiza-
tion of quantization. With a certain distribution assump-
tion, the optimal quantization scheme can be searched over
the distribution space beforehand in a brute-force way and
the quantization scheme can be selected during the training
process with a fast lookup table based strategy.

Mixed-precision Optimization Previous works [35, 5,
22] have observed that various weight layers/kernels exhibit
different variances and hence contain different redundancy.
Based on this observation, layer-wise quantization [31, 9, 8]
or kernel-wise quantization [22, 17, 5] are proposed. Dong
et al. [9, 8] propose to quantize weights with layer-wise
mixed-precision using Hessian information. Power iteration
is adopted to compute the top Hessian eigenvalue, which is
used to set the relative bit-width among layers. Deep rein-
forcement learning (DRL) based methods [31, 22] are pro-
posed to automatically select the layer-wise/kernel-wise bit-
width of weights. Ma et al. [23] propose to adjust the hyper-
parameter of network compression using Bayesian opti-

mization (BO). Qu et al. [27] propose to optimize the bit-
width allocation with a pruning-based optimization. High
accuracy quantization could be achieved with these meth-
ods, while high computational burden and memory con-
sumption are required, preventing them from practical ap-
plications. In this paper, through modeling the quantiza-
tion effect upon loss with Taylor expansion, we propose
a loss-sensitivity metric to guide the bit-width allocation
of weights and activations in the training. Since only the
gradients of quantized weights and activations are required,
which could be directly obtained from backward propaga-
tion, we can realize a highly efficient mixed-precision opti-
mization, in terms of both computation and memory.

In all, we propose a distribution-aware adaptive MBQ
method that could realize both high accuracy and efficiency.

3. Distribution-aware Adaptive MBQ

The proposed method gradually quantizes the neural net-
work to an expected average bit-width in the training pro-
cess and the overview of the proposed quantization method
is shown in Fig. 1 and Alg. 1. Specifically, during each
training epoch, according to the allocated bit-width from
LBA, the weights are quantized with the optimal MBQ
scheme selected by DMBQ based on a fast lookup table.
The activations are quantized with uniform MBQ method.
Through forward propagating the neural network with the
quantized weights and activations, the loss of the training
network is calculated and the weights are updated with back
propagation. The loss sensitivity with respect to each chan-
nel of weights and activations is calculated with the gra-
dients and accumulated along the iterations. At the end
of each epoch, with the accumulated loss sensitivity of the
whole epoch, the bit-width for different channels of weights
and activations are adjusted with LBA. The quantization op-
timization is stopped until the target average bit-width of
weights and activations are reached. The details of DMBQ
and LBA are introduced in this section.

3.1. Distribution-aware MBQ

Given a full precision neural network with tensor-valued
weights W with dimension of [, e.g. W € R!. MBQ
methods quantize W into a linear combination of M bi-
nary filters By, By,...,By € {—1,+1}, ie. W ~
W = Y a;By, where M is the bit-width of quanti-
zation, and «p, g, ..., iy are the corresponding float-point
coordinates.

The goal of MBQ methods is to find the optimal quan-
tization schemes & (@ = [a1,aq,...,ap]) and B (B =

[B1, B, ..., B)]) to minimize the quantization error, i.e.
M
in|| W — By |*. 1
min | W~ 3" By | m

k=1
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Figure 1. An overview of our proposed quantization method. We
construct a lookup table beforehand which is used to efficiently
quantize weights into MBQ in forward propagation. After back-
ward propagation, the channel-wise loss-sensitivities are accumu-
lated along with iterations and are used to adjust the bit-width at
the end of each epoch.

Through quantizing both weights and activations into the
optimal multi-bit form, the inference of the neural network
could be realized in a highly efficient way compared with
the floating point calculation.

Since searching for the optimal MBQ is NP-hard [27]
and the global optimum can only be found through brute
force searching, which is computationally intractable. Ex-
isting MBQ methods either propose to heuristically fix B
and solve a [20] or alternatively optimize v and B during
the training process [32, 36, 27], suffering from high com-
putational cost and no guarantee to obtain global optimum
in practice. In this paper, we denote the quantization as,

W =Tlg(a)(W), )

where each element in W is projected by Ilg(q)(-) onto a

set of quantization levels Q(a) = {Zkle apBrt,s.t. B €
{—=1,+1}. We denote g; () as the i-th value in Q(a) which
is sorted in ascending order and each ¢; (a) corresponds to a
binary representation 8; = [31, B2, ..., Ba]. Once the opti-
mal o is obtained, W can be derived by rounding W to the
nearest ¢; (). Denoting the i-th rounding edge s;(a) as,

—00 if i=1,
si(a) = w@rEn@ G g <M (3)
+00 if i=2M 1.

Each parameter of W in [s;(a), s;+1 ()] will be quantized
in to ¢;(a). Since each ¢; () corresponds to a binary repre-
sentation 3;, we can easily get binary filter B after quanti-
zation with the optimal . Thus the quantization optimiza-
tion problem (Eq. (1)) is then turned to how to efficiently
find the optimal a.

Inspired by Banner et al. [1] that the distribution of
weights can be modeled by laplace approximately, we ex-
plore the distribution of weights and dedicate to find the op-
timal quantization scheme of MBQ under the distribution
assumption.
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Figure 2. The distribution of layers in ResNet-18 [12] (top row)
and VGG-small [30] (bottom row). It is obvious that the weights
distribution can be approximated well using Laplace distribution.

To demonstrate the distribution assumption intuitively,
Fig. 2 shows the weight histogram of several layers in two
typical neural network, i.e., ResNet-18 [12] and VGG-small
[30], as well as the fitted probability density function of
Laplace distribution. We can see that the neural network
weights can be approximated very well by using a Laplace
distribution. Therefore, we consider a random variable X
that subjects to Laplace distribution, i.e. L(u,b), where
1 = E(X) is the mean value and b = E(|X — u|) denotes
the mean absolute deviation (MAD) of the Laplace distribu-
tion. Here, we replace Eq. (1) with the expectation of quan-
tization error under the Laplace distribution assumption as
the objective,

2M
R sit1(e)
minE((X - X)) = minZ/ F@) (@ — qi(a))?dz,
* ¥ D1V sie)

s
where f(x) is the probability density function and X is the
quantization of X. Since we can always normalize W dur-
ing quantization as,

. W-—a. .
W =Tlg) (=) b+ i 5)
where /i = E(W) and b = E(|W — /i|), we can only con-
sider the quantization of standard case of Laplace distribu-
tion, i.e. £(0,1). Substituting with f(z) = Ze~1#l into
Eq. (4) and we can get,

21%—1

min 3 2@, s @) ~ W0 @5@) )

eS
U(g,s) = 5 ((s =) = 2(s = q) +2),
2(6)
where (g, s) is the primitive function of f(z)(z — ¢)” in
the negative z-axis. However, ¢;(a) and s; (o) are not con-
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Figure 3. The quantization function of 2-bit, 3-bit, 4-bit using uni-
form quantization (top row) and DMBQ (bottom row). DMBQ has
finer resolution near the origin thus can be more suitable for high
quantization precision considering the distribution of weights.

tinuous w.r.t &, thus we cannot directly getting the closed-
form solution for Eq. (6). As an alternative, we adopt brute
force searching algorithm to find the optimal c.

With the brute force searching, we can get the op-
timal a®*' = [1.0], [1.009,1.591], [0.832,1.514,1.897],
[0.838,1.324,1.619,1.879] for M =1, 2, 3, 4 respectively.
Note that here we do not take the cases where M > 4 into
consideration, because 4-bit is well enough to represent the
weights in practice. The experiments show that the accu-
racy of the network only degrades slightly compared to the
full precision (FP) model after quantizing weights to 4-bit
(refer to details in Sec. 4.4). We use aP°* to construct a
lookup table for Q(a) w.r.t bit-width for once. In Fig. 3, we
plot the corresponding quantization function (normalized to
[-1, 1]) of the proposed distribution-aware quantization and
compared it with the uniform quantization cases. As shown,
the optimized quantization points became denser when the
distribution probability is higher, which is reasonable in re-
ducing the quantization error.

In practice, we first calculate the statistical value /i and
b channel-wisely to normalize the weights. With the tar-
geting bit-width to quantize, we could get the correspond-
ing optimal Q(e) by the constructed lookup table. Then
weights can be quantized with Eq. (5), which requires no
optimization during training and is much more efficient
compared with existing optimization based multi-bit quan-
tization methods [20, 36, 32, 27].

It is worth noting that the proposed DMBQ method can
be easily migrated to other distribution types, like Gaussian,
which makes it a general strategy for quantizing the weights
following any specific distributions to MBQ form. For de-
tails of the Gaussian case, please refer to the supplementary
materials.

Activation Quantization In order to take advantage of
bitwise operations for speedup, the activations also need to

be quantized in multi-bit binary form. However, the distri-
bution of activations is hard to model because of the rescal-
ing and translation introduced by batch normalization and
the clipping effect introduced by ReLU function. Therefore,
we employ uniform quantization and convert it to the MBQ
form for the propose of efficient training and inference.
Our quantization for activations mainly follows the
method in [18], while being adapted to MBQ form for com-
patible with the proposed DMBQ method. Specifically, we
divide the floating-point data by 7 before clipping with the
fixed interval [0, 1] and multiply the quantized data by 7 af-
ter rounding. 7 is viewed as clipping value and updated by
the gradient which is calculated by the automatic derivative
mechanism. Here we denote the full precision activations
as A € R'. The quantization in the forward pass is,
T

. A
A= |elip(2,0,1) 9] - ™

?7
where = 2V — 1, clip(z,r1,72) returns 71 for values
below r1, ro for values above 75, and the values itself for
values in the range of 7, to ro. |z] round z to the near-
est integer, and A is the quantized activations. We define
A, = |clip(£,0,1) - ] which are integers in [0,2V — 1]
and C1,Ca,...,Cy € {0, 1}l as its binary filters. Thus
A, = Zjvzl 2J=1C}, and the coordinates of C; can be

calculated as y; = 2];17 (j = 1,2,...,N). The quantized

. . N N .
activations can then be denoted as A = 5 =17 C; inthe
MBQ form.

After quantizing both weights and activations, the con-
volution can be calculated through

N M
conv(A, W) ~ conv(z v Cj, Z a,By)
j=1 k=1

N ®)
= Z Z ~jopconv(C, By).
j=1k=1

Thus the standard convolution in neural network can be
computed by binary convolutions, which can greatly reduce
the computational complexity and accelerate the inference.

3.2. Loss-guided Bit-width Allocation

Quantizing the whole network into the same bit-width
is not the optimal strategy, since different part of network
contains different degree of redundancy. In these paper, we
introduce LBA to adaptively adjust the bit-width in channel-
wise manner, taking the influence of network loss into ac-
count. We model the quantization process as disturbance
and use Taylor expansion to derive the loss sensitivity intro-
duced by quantization, i.e.

f@)~ f(@)+ (x— &) g(&), ©)
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Figure 4. Left: the loss landscape for different layers of ResNet-
20 on CIFAR-10 dataset. The landscape is plotted by disturbing
weights along the Laplace MAD b. Right: the corresponding A¢’
landscape of disturbed weights.

where x is the vector of channel-wise weights or hidden
activations and is quantized to &, f(x) represents the influ-
ence of  on the loss, and g() is the gradient/derivative of
f(-) at &. We make a simple transformation to Eq. (9), i.e.

Al=|f(x) - f(@)| = |(x— &) g(@). (10)

Eq. (10) shows the influential magnitude of the
weights/activations before and after the quantization
on the loss ¢. Since the quantization is not differentiable,
we adopt straight through estimator (STE) which is widely
used in previous works [28, 34, 20]. «x is replaced by & in
forward pass and the gradient g(&) can be easily derived
from backward propagation. The lower the value of A/,
the less sensitive the loss is to the small disturbance of x,
which indicates that less bit-width can be used to represent
a for smaller quantization error. In addition, we propose to
normalize A/ by the number of elements in @ to avoid the
error introduced by the difference of elements number of
different channels, i.e.
e @=8)"g@)| o
n
where n denotes the number of elements in . We denote
A/l as the sensitivity of different channels, and use it as an
indicator to allocate the bit-width.

As shown in Fig. 4, for each layer, we add a gradu-
ally changing variable to weights while keep other layers
and input the same, and then plot the landscape of loss and
AAZ’ . Note that here the disturbance range is set from bto
b, which is a relatively large disturbance range, i.e. even
for the extremely low bit (i.e. 1 bit) quantization, the dis-
turbance of nearly 86.5% of weights will not exceed this
range (under Laplace assumption). It can be found that A¢’
is strongly positive correlated to the loss, especially when
the disturbance is relatively small, which indicates A¢’ can
describe the sensitivity of the loss w.r.t. the quantization of
different parameters.

In practice, we first initialize the whole network to the
same bit-width, and then progressively adjust the quantiza-
tion bit-width with the guidance of loss sensitivity until the

average bit-width of the network reaches the objective, e.g.
weights with 1.0-bit and activations with 2.0-bit. Specif-
ically, during the training-aware quantization, we compute
A/ of each channel of weights/activations in each iteration,
and accumulate it across iterations in one epoch to get the
overall loss sensitivity over the whole dataset. At the end of
each epoch, we first sort all the channels according to A’
in ascending order, then decrease the bit-width of the chan-
nels with smaller A¢’. The number of channels to decrease
the bit-width is set according to a ratio r, e.g. r = 15% and
the bit-width of the Top-rT" (T is the total channel num-
ber) channels, sorted by A¢’ in ascending order, will be de-
creased by 1.

Specifically, in our method, when the bit-width is de-
creased to 0, the corresponding channels of weights are
pruned from the original network, resulting in a more
compact network structure. Furthermore, the proposed
method allows to quantize the weights to extremely low
bit-width, e.g. below 1.0-bit on average. The details of
distribution-aware adaptive multi-bit quantization are con-
cluded in Alg. 1.

Algorithm 1: Distribution-aware Adaptive MBQ

T
c=1’

Require: Training data, FP weights {W .}
table 7 for Q(a).

Initialize: the bit-widths of weights {M.}%  « 4, the
bit-widths of activations {N.}'2, < 4.

for i in epochs do

for Sample in Training data do

Compute full precision activations A..

Construct Q(ar) by T w.r.t M..

Compute W and A.. with Eq. (5) and Eq. (7).

Forward propagate and compute the loss ¢.

Backward propagate 6%0 and a‘%c .

Compute Alyy . for weights and Al . for

activations with Eq. (11).
Accumulate Alyy . and Al . along iterations.

Update W . using a?fé -

lookup

end

Sort {AE(N,C}(?; and {Al . Til ascendingly.
My = M; — 1if Lin Top-rT; sorted {Aly }11 .
Ni =N, — Lif Lin Top-rT; sorted {Aly 4}72 .

end

4. Experiments

The proposed method is verified by conducting exten-
sive experiments on CIFAR10 [14] and ILSVRC2012 [29]
with VGG [30] and ResNet-18/20/34 [12]. Besides, the ab-
lation study is present to illustrate the effectiveness of each
component of the method.



4.1. Implementation Details

We implement the algorithm with Pytorch [25] and fol-
low the hyper-parameter settings in [12, 36, 18, 28]. As
commonly used in existing methods [18, 27, 11], pre-
trained full-precision model are adopted to initialize the
whole network. The first and last layers are uniformly quan-
tized into 8-bit which can be easily converted into multi-bit
binary form with Eq. (7). The weights in other layers are
first initialized to 4-bit and fine-tuned for a few epochs (2
epochs in our implementation), then the average bit-width
are gradually decreased to the objective bit-width by apply-
ing Alg. 1 during training. Note that here we choose to
initialize the model to 4-bit, since we found that the accu-
racy of 4-bit model is already very close to the full-precision
model, as shown in Sec. 4.4. The average bit-width is de-
fined as Z%l bi , where IV is the total number of weights or

activations except for the first and last layers, and b; is the
bit-width of the i-th parameter.

4.2. Evaluations on Different Datasets

Evaluation on ILSVRC12 We apply the proposed
method on ResNet-18/34 [12], and compare with a number
of state-of-the-art quantization methods, e.g., BWN [28],
TTQ [40], HWGQ [2], INQ [38], PACT [4], LQ-Net [36],
DSQ [11], AutoQ [22], APoT [18], HAWQ [33] and ALQ
[27], on ILSVRCI12 [29] dataset with different bit-width
settings. Most of them are non-uniform methods and the
mixed-precision methods are marked as float-point number
in precision column.

Table 1 shows the performance of different methods with
different average bit-width on ResNet-18/34. Our method
shows the best appealing results in all the cases. Specif-
ically, as for ResNet-18, we achieve 0.3%, 1.2%, 0.3%,
1.4% and 0.1% Top-1 accuracy improvement compared
with state-of-the-arts methods for 1.0/32, 2.0/32, 1.0/2.0,
2.0/2.0 and 3.0/3.0 bit-width settings, respectively. As for
ResNet-34, we achieve 1.0% and 2.5% Top-1 accuracy
improvement compared with the state-of-the-art methods.
Note that, for the 2.0/32 bit-width setting of ResNet-18,
only 0.2% Top-1 and Top-5 accuracy degradation compared
with the full-precision model are introduced by our method,
which further demonstrate the effectiveness of our method.

Evaluation on CIFAR10 We also implement our method
with ResNet-20 [12] and a small version of VGG (VGG-
small) [30] on CIFARIO [14]. We compare the perfor-
mance of our method with the state-of-the-arts, i.e., BWN
[28], HWGQ [2], LQ-Net [36], DSQ [11], ApoT [18] and
ALQ [27], with different average bit-width settings. The
structure of VGG-small is obtained from the source code
of ALQ [27]. In order to quantize the fully-connected
layer to mixed-precision, we directly divide the weights into
n groups and progressively reduce the bit-width of those

Table 1. Comparison of different quantization methods with dif-
ferent bit-width settings (ResNet18/34 on ILSVRC12).

Method Prec (W/A)  Size(MB) Top-1 Top-5
ResNet-18
- FP 32/32 467 703 895
APoT [18] 3/3 4.6 69.9 89.2
HAWQ [33] -/- 6.1 68.6 -
AutoQ [22] 3.7/3.2 5.7 67.5 -
Ours 3.0/3.0 4.7 70.0 89.4
TTQ [40]* 2/32 4.9 66.6 87.2
INQ [38] 3/32 4.4 68.1 88.4
LQ-Net [36]* 2/32 4.9 68.0 88.0
ALQ [27] 2.0/32 34 68.9 -
Ours 2.0/32 3.4 70.1 89.3
BWN [28]* 1/32 35 60.8 83.0
HWGQ [2]* 1/32 3.5 61.3 -
DSQ [11]* 1/32 3.5 63.7 -
ALQ [27] 1.0/32 1.8 65.6 -
Ours 1.0/32 1.8 65.9 87.1
PACT [4]* 2/2 4.9 64.4 -
LQ-Net [36]* 2/2 49 64.9 85.9
DSQ[11]* 2/2 4.9 65.2 -
AutoQ [22] 2.2/3.0 3.6 66.4 -
ALQ [27] 2.0/2 34 66.4 -
Ours 2.0/2.0 34 67.8 88.1
PACT [4]* 172 3.5 62.9 -
LQ-Net [36]* 12 35 62.6 84.3
ALQ [27] 1.072 1.8 63.2 -
Ours 1.0/2.0 1.8 63.5 85.5
ResNet-34
 FP 3232 8.1 737 913
LQ-Net [36]* 2/2 7.5 69.8 89.1
DSQ [11]* 2/2 7.4 70.0 -
ALQ [27] 2.0/2 6.3 71.1 -
Ours 2.0/2.0 6.3 72.1 90.7
HWGQ [2]* 12 4.8 64.3 85.7
LQ-Net [36]* 172 4.8 66.6 86.9
ALQ [27] 1.072 34 67.3 -
Ours 1.0/2.0 34 69.8 89.2

*Both the first and last layers are unquantized.

groups with LBA. In this experiment, we simply set n to be
the number of the output features of weights.

Table. 2 shows the performance comparison on CI-
FAR10 [14]. For the ResNet-20 and VGG-small, it is obvi-
ous that the proposed method obtains the best performance
in all cases. Furthermore, our method can even quantize
the network under 1-bit, e.g. VGG with 0.7-bit, with ac-
ceptable accuracy degradation, which could considerably
decrease the computation and memory footprint. For the
cases that ResNet-20 with 2.0/32 bit-width, and VGG-small
with 1.0/2.0 bit-width, we can even obtain better accuracy
than the full-precision model. '

I'This accuracy promotion are also observed in [18], which could be
explained by the regularization effect of the quantization.



Table 2. Comparison of different quantization methods with dif-
ferent bit-width settings (ResNet-20/VGG-small on CIFAR10).

Table 4. Comparison between baseline (GP), layer-wise precision
(LP) and channel-wise precision (CP).

Method Prec (W/A) Top-1 Model Method Prec (W) Top-1
ResNet-20 GP/LP 1 92.4
””” P 332 T T w4 VGG small CP 0.7 93.7
LQ-Net [36] 2/32 91.8
GP 2 68.5
Bv%“[szs] Zi% ;2 ggf ResNet-18 LP 2.0 69.6
: Cp 2.0 70.1
LQ-Net [36] 1/32 90.1
DSQ[11] 1/32 90.2 : GP/LP 1 64.5
Ours 1.0/32 91.4 ResNet-18 cp 1.0 65.9
LQ-Net [36] 2/2 90.2
APoT [18 2/2 91.0 .. . . .
((;ur[s ] 2.0/2.0 91.7 training time is dramatically reduced compared to the pre-
LQ-Net [36] 12 88.4 vious MBNE, i.e., LQ-Net and ALQ. Note that for the case
Ours 1.0/2.0 90.4 of quantizing the bit width to 2.0/32 with mixed-precision,
VGG-small our method can speedup the training time by more than 2 x
77777 B 73_%%;7 B Py compared with the state-of-the-art method ALQ. Compared
BWN [28] 132 90 1 to the full-precision model, our method only increase the
LQ-Net [36] 2/32 93:8 training time slightly thus can be more suitable for practical
ALQ [27] 0.7/32 92.0 applications.
Ours 0.7/32 93.7 .
HWGQ [2] 12 925 4.4. Ablation Study
LQ-Net [36 172 93.4 . I . . .
Qosrs[ ] 1.0/2.0 93.9 Loss-guided Bit-width Allocation In this experiment,

Table 3. Comparison of training time with state-of-the-art MBQ
methods.

Method Prec(W/A) Time

FP 32/32 1.00x
LQ-Net [36] 2/32 1.40x
ALQ [27] 2.0/32 2.46 %
DMBQ + LBA 2.0/32 1.16x
LQ-Net [36] 2/2 2.30%
LQ-Net [36] 3/3 3.70x
DMBQ 4/4 1.14x
DMBQ + LBA 2.0/2.0 1.22x

4.3. Training Time Compared with Other MBNs

Previous MBQ based methods [36, 27] propose to solve
the coordinates through an iterative optimization, requiring
heavy computation during training. In this section, we com-
pare the training time of our method with the state-of-the-art
MBQ methods, e.g. LQ [36] and ALQ [27], on ResNet-18.
The training time of LQ-Net is obtained from the original
paper. The training time of ALQ is measured by the source
code which is provided by the authors. Specifically, we ac-
cumulate the training time of quantization and divide it by
the training time of FP model which is trained with same
epochs. For fair comparison, we measure the training time
of different methods with the same strategy.

As shown in Table 3, benefiting from the look-up ta-
ble strategy of DMBQ and the efficient calculation of loss
sensitivity metric in LBA with backward propagation, the

we analyze the effectiveness of the proposed LBA. We
quantize the weights to global-precision using DMBQ and
take it as the baseline, and we quantize the weights to layer-
wise precision (LP) and channel-wise precision (CP) us-
ing DMBQ and LBA for comparison. The bit-width of LP
model is adjusted in the same way with CP model, except
that it is based on the gradient-based quantization sensitiv-
ity metric defined layer-wisely. The activations are kept as
floating-point values for fair comparison. Both the base-
line and the corresponding mixed-precision model are ini-
tialized by the same pre-trained model and trained with the
same epochs and learning rate schedule.

Table 4 shows the comparison between the global-
precision (GP) and mixed-precision (LP and CP). It can be
observed that there is a large gap between global-precision
models and channel-wise precision models, e.g. the 2.0-bit
channel-wise precision ResNet18 only has 0.2% degrada-
tion of Top-1 accuracy while the 2-bit global-precision one
has 1.8% degradation, compared with the Top-1 accuracy
of full-precision (70.3%). The LP models have better per-
formance than GP models but lower than CP models. Note
that quantizing weights to 1.0-bit with layer-wise precision
will degenerate into 1-bit global-precision, since we cannot
directly quantize a whole layer to 0-bit. While the proposed
LBA with channel-wise precision could enable to quantize
to extremely low average bit width (i.e. under 1.0-bit) which
can further remove the redundancy of the neural network
(e.g. 0.7bit-VGG with 93.7% Top-1 accuracy).

We also plot the average bit-width and normalized dis-
tribution of different bit-width across layers of those three
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Figure 5. The statistical characteristics of CP models. Top: The average bit-width and the number of weights of each layer. Bottom:

Normalized distribution of different bit-width of each layer.

channel-wise (CP) model in Fig. 5. In VGG-small, the first
fully-connected layer (i.e. the 7-th layer) has the most of
the parameters and the average bit-width of this layer is
only 0.03-bit, where most of the parameters are pruned (bit-
width are reduced to 0-bit in LBA). In addition, there is only
a slight accuracy loss (i.e. 0.1%) of 0.7-bit VGG compared
to floating-point model, which indicates high redundancy
exists in this layer and is eliminated by the proposed LBA.
In ResNet-18, it can be found that the average bit-width is
roughly decreased across the layers except for the shortcut
layers in ResNet18 (i.e. the 8th, 13rd, 18th layers), which
indicates that the shortcut layer plays an important role in
data flow and require more precision to keep the whole ac-
curacy. It can also be found that different networks have
different sensitivity with respect to accuracy (e.g. the accu-
racy degradation of 0.7/32-bit VGG-small is much smaller
than that of 1.0/32-bit ResNet-20), which indicates that to
achieve a better trade-off between accuracy and efficiency,
different models should be flexibly quantized to different
bit-width based on its network capacity.

Distribution-aware MBQ To demonstrate the effective-
ness of DMBQ, we design two experiments for compari-
son: 1) uniform quantization, denoted as uniform. The
weights are uniformly quantized under the maximum ab-
solute value of each channel (i.e. [-max |W;|, max |W;]
where ¢ means the i-th channel). 2) DMBQ, the proposed
MBQ method. Those experiments are implemented on
ResNet-18 with ImageNet dataset. Activations are quan-
tized using the method described in Sec. 3.1 and no LBA
is introduced for clear comparison. Table. 5 summarizes
the results of ResNet-18 with different methods. As shown,
DMBAQ could achieve 2.4%/1.8%, 0.7%/0.4%, 0.2%/0.1%
Top-1/Top-5 accuracy improvement than uniform quantiza-
tion for 2-bit, 3-bit, 4-bit respectively. Besides, the lower
the bit width, the higher the accuracy gain, which further
demonstrate the effectiveness of the proposed DMBQ meth-

Table 5. Comparison of uniform quantization and DMBQ.

Method Prec (W/A) Top-1 Top-5
FP 32 70.3 89.5
2/2 62.7 84.6
Uniform 3/3 68.5 88.4
4/4 70.0 89.3
2/2 65.1 86.4
DMBQ 3/3 69.2 88.8
4/4 70.2 89.4
ods.

5. Conclusion

In this paper, we propose a novel distribution-aware
quantization method (DMBQ) and loss-guided bit-width al-
location (LBA) for multi-bit binary networks. Through in-
corporating the distribution prior of weights, we searched
the optimal MBQ with brute force searching beforehand
and realize efficient MBQ in the training process based on
a lookup-table based strategy. Based upon DMBQ, we pro-
pose LBA to adaptively reduce the bit-width of weights and
activations with the guidance of the loss sensitivity metric.
Experimental results show that our method not only out-
performs state-of-the-art quantized networks in terms of ac-
curacy but also is more efficient in terms of training time
compared with state-of-the-art MBNs.
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